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Poor air quality is a known determinant of poor health out-
comes, with even modest improvements in air quality likely 
to save millions of premature deaths annually1,2. Children 

younger than 5 yr are particularly vulnerable and impacts are 
thought to be largest in developing regions where exposure to 
high levels of ambient air pollution during childhood is estimated 
to reduce overall life expectancy by 4–5 yr on average3. However, 
while quantitative assessment of the harms from pollution exposure 
has greatly improved in recent years, only recently have researchers 
begun using quasi-experimental research designs that plausibly iso-
late variation in ambient pollution exposure from other correlated 
factors that also affect health4–9. Most of these estimates are concen-
trated in wealthy regions or limited to relatively wealthy cities in 
developing countries where data are available.

Direct estimation of the local health burdens of air pollution 
exposures requires addressing two challenges. The first challenge 
is accurately measuring both exposures and responses, which has 
become easier with both advances in remote sensing of air quality10 
and the accumulation of georeferenced household survey-based 
health measurements across broad geographies11. The second chal-
lenge is disentangling pollution exposures from other correlated 
variables that might also directly affect health. In particular, many 
economic activities (for example, transportation, industrial produc-
tion and biomass clearing in agriculture) produce particulate mat-
ter of diameter <2.5 μm (PM2.5) locally but can also directly affect 
health outcomes by changing the economic status of households. 
These direct effects could positively affect child health, for instance 
if higher incomes enable greater access or use of health services, or 
negatively affect child health if, for example, economically engaged 
adults are less able to invest time in childrens’ well-being12.

To disentangle the impact of covarying factors on infant mortal-
ity, researchers have used study designs that leverage setting-specific 
sources of variation in PM2.5 that are likely uncorrelated with other 
factors that affect health outcomes4–9. These approaches use, for 
example, changes in environmental policy6,9, naturally occurring 
local weather phenomena5 and traffic patterns7 as sources of plau-

sibly exogenous variation in air quality. However, given that these 
approaches rely on often idiosyncratic local-level events for varia-
tion, they are difficult to apply across larger spatiotemporal scales. 
To build a broader understanding, recent quasi-experimental stud-
ies have used local variation in PM2.5 derived from natural sources 
such as dust and argued that this approach allows for causal interpre-
tation of PM2.5 impacts on health across broad developing-country 
geographies13,14. While using local-level variation in PM2.5 from 
natural sources helps mitigate some concerns of economic activity 
as a confound, these studies—with the exception of a related paper15 
that uses reanalysis data to estimate Saharan dust transport to 
population centres—have no explicit way of distinguishing locally 
sourced PM2.5 from distant PM2.5 using direct measurement (see 
Supplementary Information for additional discussion of the related 
literature). As a result, the possibility remains that existing estimates 
in these developing-country settings2,13, which are critical for under-
standing global health burdens and evaluating policy choices, could 
be biased by unobserved local economic activity. Existing works 
also provide little guidance on how impacts from naturally sourced 
PM2.5 might be mitigated.

Here we combine household survey-based data on the location 
and timing of nearly one million births across Africa with changes 
in local PM2.5 levels driven by remote dust activation events in the 
Bodélé Depression in Chad. The Bodélé Depression is the single 
largest source of dust emissions in the world, including substantial 
intercontinental transmission16,17, and is thousands of kilometres 
away from most of the observed births in our study (Extended Data 
Fig. 1). Using dust emission from the Bodélé allows us to isolate the 
impact of poor air quality from local unobserved covarying factors 
that might also affect child health. Dust propagation from the Bodélé 
is associated with variation in climactic and circulation conditions in 
the Sahara18–20, including variation in local rainfall and in strong winds 
funneled between nearby mountain ranges. Activation events propa-
gate dust from the Bodélé across much of West Africa over a matter 
of days (Extended Data Fig. 2a)21 and remotely sensed dust aerosol 
optical depth (DAOD) data20 indicate that these activation events are 
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a substantial driver of local DAOD levels across much of Africa, with 
dissipating intensity over space and time (Extended Data Fig. 2b).

While dust is transported on a daily timescale, satellite retriev-
als of aerosols, such as dust, are not available under cloud cover 
and are available within a limited horizontal distance from the sat-
ellite track. These gaps in coverage can be partially mitigated by 
aggregating over longer time spans. To study the impacts of dust 
on health, we therefore use recently developed annually aggregated 
estimates of particulate exposure22. These data incorporate retriev-
als from MODIS AOD as well as other satellite instruments (MISR, 
SeaWIFS) to estimate annual bias-corrected average surface PM2.5 
concentrations at 0.01∘ × 0.01∘ spatial resolution across the globe 
and use models to partition these PM2.5 concentrations into natu-
ral (dust and sea salt) and non-natural sources10. We validate these 
partitions against independent ground station data, finding strong 
correlations between estimated and observed average dust shares 
across station locations in our study countries (see Supplementary 
Information and Extended Data Fig. 3).

While dust export from the Bodélé Depression is highest during 
the November–March Harmattan season, the Bodélé is one of the 
only major African dust sources that is active year-round. Emissions 
from the Bodélé contribute greatly to annual average PM2.5 con-
centrations across much of Africa, particularly in the north and 
west where natural sources account for >75% of total PM2.5 (Fig. 
1a,b). Annual variation in dust concentrations and rainfall over 
the Bodélé correlate strongly with temporal variation in the PM2.5 
concentrations across our African study locations (Fig. 1c,d). While 
exported dust is one of the many factors affecting PM2.5 concentra-
tions in our sample, the motivation for using natural PM2.5 from the 
Bodélé as a source of variation is that emissions from distant natural 
sources are less likely to be correlated with confounding local eco-
nomic activity than emissions from local anthropogenic (or natu-
ral) sources. Indeed, while we find a positive time-series correlation 
in our study locations between estimates of PM2.5 concentrations 
from anthropogenic sources and night-time lights (a proxy for local 
economic activity), the same correlation does not exist between 
night-time lights and PM2.5 concentrations derived from remote 
natural sources (Fig. 1e).

To estimate the impact of local PM2.5 exposure on health out-
comes, we adopt an instrumental variable approach that uses 
remote variation in dust concentrations (which we take as a proxy 
for emission) or rainfall to generate exogenous local variation in 
PM2.5, which we then link to observed health outcomes (Methods). 
Our estimation strategy first uses the product of time-varying dust 
PM2.5 concentrations over the Bodélé Depression and spatially 
varying average shares of local PM2.5 from natural sources to pre-
dict local-level PM2.5 exposure over the 12 months following each 
observed birth in our data. We then study whether these predicted 
PM2.5 levels explain the likelihood a child survives to her first birth-
day, using georeferenced data from the Demographic and Health 
Surveys (DHS) on the location and timing of 990,696 births across 
30 countries and 15 yr (Extended Data Fig. 1; Methods). These 
household survey data do not allow us to observe cause of death 
and our estimates thus represent impacts on all-cause infant mortal-
ity; it is likely that exposure to air pollution affects health through 
multiple pathways13.

For this two-stage estimation procedure to recover the causal 
effect of variation in air quality on infant health, it must be the case 
that variation in dust over the Bodélé is strongly correlated with 
downstream local air quality and that variation in dust over the 
Bodélé is uncorrelated with other factors beyond local air quality 
that might also impact child health in that location. To help ensure 
that this later requirement is met, both estimation stages control 
for additional factors that could possibly be correlated with both 
remote dust concentrations and local air quality. These include 
time-varying measures of local temperature and rainfall, as well as 
a large set of fixed effects (dummy variables) that account for any 
additional time-invariant differences in ambient PM2.5 and mortal-
ity across locations (for example, due to differences in climate or 
average economic development), local seasonality in both air qual-
ity and mortality, and trending factors or abrupt shocks common 
to all locations in our sample (for example, overall improvements 
in health services). Additional robustness tests control for global 
climate phenomena (for example, El Niño/Southern Oscillation, 
ENSO) that could possibly be correlated with both Saharan dust 
emission and local health outcomes (Methods). We emphasize that, 
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Fig. 1 | Local air pollution in Africa is driven by both local economic activity and remote natural sources. a, Average annual PM2.5 concentration during 
2001–201510, with the Bodélé Depression outlined in black. b, The share of PM2.5 estimated to come from natural sources10, with the Bodélé Depression 
outlined in black. c, Higher dust concentrations over the Bodélé are associated with higher local PM2.5 concentrations in our study locations. Annual 
observations of dust concentrations over the Bodélé were divided into equal-sized bins and the average annual PM2.5 concentrations (points) and 
interquartile ranges (grey lines) over all survey locations were calculated within each of these bins. Years with more dust in the Bodélé Depression 
are associated with higher average PM2.5 concentrations across Africa. The histogram plotted in the bottom in grey indicates the distribution of dust 
concentration exposures in our data. d, Analogous to c using rainfall totals over the Bodélé in place of dust concentrations, showing that higher Bodélé 
rainfall totals are associated with lower local PM2.5 concentrations in our study locations. The histogram plotted in the bottom indicates the distribution 
of rainfall totals over the Bodélé in our data. e, Binned scatterplot of night-time light intensity measured as unit-less digital number (DN) and PM2.5 
concentrations by source in our study locations. Night-time light intensity was assigned to one-unit bins and average PM2.5 concentrations were calculated 
within each bin separately for anthropogenic and naturally sourced (dust and sea salt) PM2.5. Higher night-time light intensity is associated with higher local 
concentrations of PM2.5 from anthropogenic sources (solid line) but not with higher PM2.5 from natural sources (dotted line).
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to estimate the impact of dust exposure on infant mortality, it is not 
necessary for us to observe and directly control for all other factors 
that might contribute to mortality risk. Instead, the key requirement 
is an ability to isolate dust exposure from other correlated factors 
that might affect mortality and the purpose of the instrumental 
variables procedure is to do just that.

Results
Annual variation in dust concentrations in the Bodélé Depression is 
strongly and positively associated with PM2.5 variation in the loca-
tions where births are observed in our data, even after conditioning 
on a broad set of time-invariant and time-varying controls (Fig. 2). 
We find analogous relationships when we use time-varying mea-
sures of rainfall accumulation over the Bodélé Depression rather 
than direct measures of dust concentration as our source of tem-
poral variation; higher rainfall is known to reduce dust emission 
in the region23. These relationships are robust to the inclusion of 
rainfall and temperature in the birth locations and to the inclu-
sion of global ENSO variation. Results are similar when we restrict 
our analysis to exposure comparisons between siblings within the 
same household by including mother fixed effects (Extended Data 

Fig. 4). Consistent with the short timescale of dust transmission, 
we do not find meaningful associations between PM2.5 concentra-
tions in our study locations and dust concentrations or rainfall in 
the Bodélé Depression in the previous year. These robust estimated 
relationships are consistent with existing understanding of the  
role the Bodélé Depression plays in propagating dust throughout 
the region18,19,21,24.

To further test whether this strong relationship between remote 
dust emission and local PM2.5 concentrations is driven by common 
time trends, common year-specific shocks across dusty locations or 
by average spatial differences between dusty and less-dusty loca-
tions, we conduct a placebo exercise where we randomly reorder 
either the time series of dust emissions over the Bodélé or the spatial 
shares of baseline levels of dust exposure and re-estimate the rela-
tionship between these placebo instruments and local-level PM2.5 
concentrations (Methods). In all cases, estimates on these placebo 
samples (n = 1,000 for each type of reshuffling) are close to zero 
(Fig. 2b,c), suggesting our estimated relationships between local 
PM2.5 concentrations and remote dust emission are not spurious.

We then use this predicted variation in local PM2.5 driven by 
remote dust emission to estimate the impact of PM2.5 on local health 
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outcomes. We estimate that an increase of 10 μg m–3 in local ambi-
ent PM2.5 concentration causes a 24% rise in infant mortality across 
our full sample (95% confidence interval (CI): 10–35%) and a 17% 
rise in our West Africa sample (95% CI: 2–33%; Fig. 3a). Our results 
are similar whether we use either dust emission or rainfall over the 
Bodélé as our instrument, and are again robust to controlling for 
both local temperature and rainfall variation as well as global ENSO 
variation (Extended Data Fig. 5). When we restrict analysis to 
between-sibling comparisons, estimates remain large and positive 
but are noisier probably due to the substantially reduced variance in 
our explanatory variable.

For all specifications, instrumental variables estimates are larger 
than analogous ordinary least squares (OLS) estimates that simply 
regress local health outcomes on local PM2.5 exposures and con-
dition on the same fixed effects; these differences are statistically  

significantly different in the full Sub-Saharan African sample 
(P = 0.02 for the dust instrument) but only marginally statistically 
different for the West African sample (P = 0.06 for the dust instru-
ment). Importantly, given our instrumental variables strategy, our 
estimates represent ‘local average treatment effects’25, which is the 
average effect of PM2.5 on child health for those individuals for 
whom changes in dust emission over the Bodélé cause changes in 
local PM2.5 exposure. Our estimates thus do not represent treatment 
effect estimates for other types or sources of PM2.5 exposure nor 
estimates for regions where variation in PM2.5 is not driven by emis-
sion from the Bodélé.

Discussion
Our estimates of the effect of PM2.5 on infant mortality are greater 
than the largest previously published empirical estimates for all 
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of Sub-Saharan Africa13. There are several potential explanations 
for this difference. First, if local economic activity worsens pollu-
tion but improves health outcomes, estimation strategies that do 
not explicitly account for this covariation will underestimate the 
impact of pollution on health. Our instrumental variables strategy 
overcomes this challenge by directly isolating variation in pollution 
exposure from variation in local economic activity. Second, classi-
cal measurement error in local measures of PM2.5 exposure will bias 
OLS estimates of the effect of PM2.5 on health toward zero, a problem 
that is corrected by instrumental variables estimation if the instru-
ment is uncorrelated with the local measurement error26. In our set-
ting, and particularly for our rainfall instrument, this condition is 
plausibly met, providing another reason why instrumental variables 
estimates are larger than least squares estimates. Consistent with 
these explanations, our instrumental variable estimates for Africa 
are comparable in magnitude to other quasi-experimental estimates 
from elsewhere in the world (Fig. 3b), nearly all of which come from 
developed or middle-income countries where exposures are often 
more precisely measured. Our results are also corroborated by other 
studies that use different measures of particulate exposure to exam-
ine the effect of dust exposure on health and economic outcomes in 
West Africa14. Taken together, these estimates clearly indicate that 
air pollution is a critical determining factor for child health around 
the world and that improvements in air quality can be expected to 
cause large improvements in child health.

In our African setting, our results highlight the particular impor-
tance of air pollution that is non-anthropogenic in origin and sug-
gest two broad pathways for reducing the health burden of this 
exposure. A first approach would be to better understand how local 
interventions, ranging from personalized protective equipment to 
early warning systems, might reduce individuals’ dust exposure in 
downwind inhabited areas. A second approach would be to better 
understand the existing and potential future controls on emissions 
at their Bodélé source. These could include both known climate 
controls as well as prospective direct efforts to mitigate emissions 
at source locations.

Regarding the climate channel, our results, and much past 
work16,19,23,24,27, suggest that climate variation is a key control on dust 
export from the region. Because anthropogenic climate change is 
projected to have large potential influence on these patterns28,29, 
altering the trajectory of future climate change could have large 
effects on child health across the continent through its impact on 
the emission and transport of Saharan dust. To our knowledge, the 
potential importance of this channel has not been recognized or 
explored.

To illustrate this channel’s potential importance, we calculate 
projected changes in rainfall over the Bodélé by mid-century (2035–
2065) relative to a 1995–2015 baseline, using 36 models from the 
Coupled Model Intercomparison Project Phase 5 (CMIP5) archive 
run under the representative concentration pathway 8.5 (RCP 8.5) 
emissions scenario. As has been previously characterized18,28,30, 
rainfall projections over the regions are highly uncertain, with the 
ensemble median projected rainfall change close to zero but with 
individual models drying or wetting by more than 25% during 
Harmattan months (Fig. 4a). Incorporating uncertainty in both 
how Bodélé rainfall affects local PM2.5 and in how local PM2.5 affects 
mortality, these rainfall changes imply a large spread in potential 
changes in infant mortality due to changes in dust exposure (Fig. 
4b,c), ranging from a –13% decline in mortality (5th percentile esti-
mate) for models projecting precipitation increase to a 12% increase 
in mortality by mid-century (95th percentile) for models that dry. 
To our knowledge, these potential impacts are substantially larger 
than any known projected health impact of climate change on the 
continent. These findings suggest that better understanding the 
current and evolving future climatic constraints on Saharan dust 
export, including vegetation and precipitation feedbacks that may 
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Fig. 4 | Disagreement among climate model projections of future 
rainfall changes in the Sahara generates a large spread in projected 
infant mortality changes in Africa. a, Projected changes in rainfall levels 
(2045–2055 relative to 2000–2015) over the Bodélé Depression during the 
Harmattan season (November–April) across 36 climate models. Baseline 
average rainfall during these months is 43 mm. b, Projected changes 
in PM2.5 across West Africa in response to rainfall changes shown in a, 
incorporating uncertainty in both the distribution of rainfall projections 
and in the statistical relationship between rainfall in the Bodélé and local 
PM2.5 across West Africa (see Methods). c, Changes in infant mortality rate 
(IMR) resulting from the changes in PM2.5 modelled in b. Distribution of 
outcomes represents uncertainty in PM2.5 changes as well as uncertainty in 
the relationship between PM2.5 and infant mortality.
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be poorly represented in models16,31–33 and the large influence of 
changing wind strengths and patterns on dust export16, remains a 
key scientific and policy priority.

Because mitigating dust exposure, particularly for infants, would 
be extremely difficult (many houses have open windows or per-
meable roofs or walls, and infants and young children cannot or 
will not wear masks), direct efforts to mitigate dust emission from 
Bodélé also warrant future evaluation. In particular, existing esti-
mates of even small amounts of renewable groundwater resources 
in the region34, combined with proven technologies currently 
deployed in the Sahel that use renewable power to bring this water 
to the surface35, suggest that local groundwater could potentially be 
used to dampen the surface and mitigate lofting of dust aerosols 
from Bodélé, reducing downwind exposures and health burdens. 
Analogous interventions have been used successfully to suppress 
dust emissions at small scale in California, using shallow flood-
ing for near-complete mitigation of dust emission from important 
emission sites36.

To explore this possibility, we estimate the costs and benefits of 
deploying solar-powered central pivot irrigation in the Bodélé, using 
our estimates of how a millimetre of additional water reduces down-
wind mortality, combined with conservative estimates of recharge 
and flow rates, equipment and operational costs, and assumptions 
of how averted infant deaths are converted to lost life-years (see 
Methods). We calculate a cost per averted life-year lost of US$24 
(95% CI: US$11–75; Fig. 5), which even if low by a factor of five, 
is well below cost thresholds designating ‘priority’ interventions in 
low-income countries. For instance, the World Health Organization 
recommends that any intervention costing less than per capita GDP 
is ‘very cost effective’ (their highest designation)37, and average per 
capita incomes in West Africa range from ~US$400 in Niger to 
~US$2,000 in Ghana and Nigeria. Pumping groundwater to reduce 
dust export also appears cost competitive with many leading health 
interventions currently in use, including a range of vaccines, water 
and sanitation interventions and behavioural interventions38.

While this calculation clearly ignores other plausibly important 
constraints to project deployment, such as logistical and political 
impediments to operating in remote and insecure environments in 
the Sahara, or operationalizing the deployment of irrigation during 
wind events, our intent is to suggest that such projects, if feasible, 

could yield enormous benefits at a modest cost. Better understand-
ing the technical, economic and political constraints—as well as 
potential climate32,39 and biogeochemical40 impacts—of the deploy-
ment of such a system is a promising avenue for future work.

Methods
A description of the main methods used in the analysis are provided here and 
additional details are available in Supplementary Information.

Data. Infant mortality data. Data on infant health outcomes are taken from the 
DHS, nationally representative surveys that are conducted in many low-income 
and middle-income countries. DHS have a two-stage design, whereby a number 
of clusters are first selected from a list of enumeration areas created in a recent 
population census, and then households are randomly selected in each of the 
clusters, and women aged 15–49 yr are selected from those households for in-depth 
surveys. In most survey waves, enumerators use global positioning system devices 
to collect geospatial information to identify the central point of the populated area 
of each cluster11. We used data from all 65 surveys available at the time of writing 
that were carried out between 2001 and 2015 to reconstruct a village-level birth 
history. Our sample covers 30 countries and includes 990,696 individual birth 
outcomes (Extended Data Fig. 1). The outcome of interest for this study is infant 
mortality, which is represented by a dummy variable equal to one when a child was 
reported to die within the first 12 months following birth. Children who were alive 
but less than 12-months-old at the time of the survey were not included in our 
sample. The mean infant mortality rate in our sample is 71 deaths per 1,000 births.

PM2.5 data. For our main analysis, we use data on PM2.5 from the Atmospheric 
Composition Analysis Group at Dalhousie University. These data incorporate 
retrievals from MODIS AOD as well as other satellite instruments and models 
(MISR, SeaWIFS, GEOS-Chem) to estimate annual bias-corrected average 
surface PM2.5 concentrations at high spatial resolution (down to 0.01∘ × 0.01∘) 
with global coverage10. We use this data product along with an analogous product 
produced by the same group that uses models to subdivide estimates of PM2.5 into 
natural (dust and sea salt) and non-natural sources. Non-natural source PM2.5 is 
estimated by applying simulated compositional information following the process 
described in Van Donkelaar et al.22. We emphasize that the dust PM2.5 data we use 
are a combination of information from satellites (to obtain total aerosols), from 
statistical models (to relate total aerosols to surface PM2.5) and from transport 
models and emissions inventories (to separate dust from non-dust PM2.5). There 
is undoubtedly considerable uncertainty in these data, particularly regarding 
dust concentrations. However, given existing limitations, we believe these data 
provide the best available estimates of PM2.5 and dust concentrations across Africa. 
Moreover, we note that these data use the enhanced MODIS Deep Blue AOD 
for aerosol retrievals over the desert as well as the MAIAC algorithm. MODIS 
Deep Blue was specifically designed for bright desert surfaces41 while the MAIAC 
algorithm is a high spatial resolution complement to the Deep Blue data that is 
also designed to perform especially well over bright desert surfaces because it uses 

0 20 40 60 80 100

0

0.05

0.1

0.15

0.2

0.25

US$ per averted year of life lost

S
ha

re
 o

f e
st

im
at

es

0 20 40 60 80 100

PV power capacity needed for pump

Drilling cost per m

Power needed to run pivot

PM2.5 change in West Africa per mm in Bodélé

Cost per Wp PV pump system and BOS

Distribution system cost

System lifetime for PV pump and pivot systems

Cost per Wp PV system alone

Percentage change IMR per µg m–3 change in PM2.5

Years of life lost per death

US$ per averted year of life lost

Median estimate = US$23.58
Main estimate = US$23.58

a b Parameter Range of estimates

Fig. 5 | Cost per averted life-year lost under an intervention using pumped groundwater to reduce dust export from the Bodélé. a, Distribution of 
estimated cost per averted year of life lost, with a median value of US$24 (shown by red dotted line) and a 95% CI of US$11–75. Distribution was 
calculated by repeatedly sampling parameters with defined uncertainty (see Methods and Extended Data Table 1). The mean estimate is US$32 per 
averted year of life lost. b, Sensitivity of cost estimates to parameter values. For each parameter with a defined range of uncertainty, the parameter was 
fixed at its minimum (maximum) value and all other parameters were repeatedly sampled and median cost estimates were calculated for the minimum 
value and maximum value of the fixed parameter. Bars show the range of cost estimates when fixing the parameter at its minimum and maximum values, 
respectively. Cost estimates depend most heavily on the assumed years of life lost per death and on the estimated response of the infant mortality rate 
(IMR) to changes in PM2.5. Wp, watts peak; PV, photovoltaic; BOS, balance of system.

Nature Sustainability | VOL 3 | October 2020 | 863–871 | www.nature.com/natsustain868

http://www.nature.com/natsustain


ArticlesNature Sustainability

historical time-series information to help distinguish clouds and other transient 
phenomena and accounts for major land surface reflectance changes that take place 
in regions like the Sudano-Sahel.

PM2.5 and its natural component are extracted for each year for all study 
locations as well as the Bodélé (Extended Data Fig. 1). We emphasize that 
satellite-derived PM2.5 concentrations over the Bodélé are a proxy, rather than a 
direct measure, of dust emission from the area, and probably capture some dust 
transport into the area from nearby regions. As described below, what is key for 
our analysis is that these sources of Saharan dust are uncorrelated with local factors 
in our study region thousands of miles away.

To study the daily propagation of dust from the Bodélé across Africa (Extended 
Data Fig. 2), we use a recent global dataset of daily DAOD also derived from 
MODIS AOD20. We do not use these data for our main analysis because of the 
coarse spatial resolution and large numbers of missing values.

Rainfall data. High-resolution remote sensing based gridded rainfall data 
come from the Climate Hazards Group InfraRed Precipitation with station 
data (CHIRPS)42. CHIRPS incorporates satellite imagery with ground station 
observations to estimate monthly rainfall totals globally at 0.05∘ × 0.05∘ spatial 
resolution. We sum monthly rainfall data across the post-birth period described 
above separately for where observed births occur and in the Bodélé Depression. 
Mean annual rainfall totals are 123 cm in our study locations and 4 cm in the 
Bodélé Depression.

Constructing PM2.5 exposure. For each birth, we estimate the dust instrument by 
multiplying the share of total PM2.5 from natural sources in the DHS cluster with 
PM2.5 concentrations in the Bodélé in the 12 months following the birth. The share 
of total PM2.5 from natural sources is estimated by first subtracting PM2.5 with 
dust and sea salt removed from total PM2.5 and then dividing by total PM2.5. For 
the rainfall instrument we replace the Bodélé PM2.5 concentration with the sum 
of monthly rainfall totals in the Bodélé over the same period. For OLS (also used 
in the first stage of the instrumental variable approach) we estimate total PM2.5 
concentrations by simply retrieving the total PM2.5 concentration in the DHS 
cluster for the same time period. Given that PM2.5 data are only available annually, 
we calculate PM2.5 concentration in period t as the weighted averages of the annual 
data, where the weights represent the share of the year that falls into the time 
period. For example, a child born in the third month of year t would be assigned a 
post-birth concentration of (10/12)[concentration in year t] + (2/12)[concentration 
in year t + 1].

Estimation. To isolate the causal effect of PM2.5 exposure on infant health, we use 
an instrumental variables/two-stage least squares strategy. In contrast to an OLS 
estimator where infant health is regressed directly on local pollution, here we use 
plausibly exogenous variation in local PM2.5 driven by distant dust emission to 
identify the impact of PM2.5 exposure on health. Our specific strategy is analogous 
to shift-share instruments commonly used in economics43, where we combine 
spatial variation in average exposure levels with time-series variation in a source 
of exposure. For the spatial variation, we calculate the share of PM2.5 that comes 
from non-anthropogenic sources, averaged over our 2001–2015 study period. The 
mean share of PM2.5 from natural sources in our sample is 42% and varies from 0% 
in parts of East Africa to 97% in parts of West Africa (Fig. 1b). For the time-series 
variation, we use either time variation in PM2.5 concentrations in the Bodélé 
Depression or cumulative rainfall over the Bodélé. The mean 12-month average 
PM2.5 concentration in the Bodélé Depression is 75 μg m–3 in our sample but varies 
between 65 and 80 μg m–3 (Fig. 1c). Mean cumulative rainfall over the same period 
is 4.3 cm in our sample and varies between 4.0 and 5.0 cm (Fig. 1d). Our instrument 
is then constructed by multiplying the spatially varying shares of PM2.5 from 
natural sources in all locations i with either the time-varying dust concentrations or 
cumulative rainfall in the Bodélé Depression across time periods t.

Two-stage least squares/instrumental variables regression proceeds in two 
steps. In the ‘first stage’, the potentially endogenous regressor of interest (in 
our case, local measurements of PM2.5 exposure over time) is regressed on the 
instrument and all other controls. Then, in the second stage, the outcome of 
interest (in our case, infant mortality) is regressed on the the predicted values from 
the first stage as well as the controls.

Our first-stage regression linking distant dust export to local PM2.5 exposure is 
then:

PMijcmt ¼ λDVit þ μXijcmt þ γj þ δt þ νcm þ εijcmt ð1Þ

where PMijcmt denotes the post-birth total PM2.5 exposure for individual i in 
cluster j, country c, born in month and year mt. DVit = (ϕj × Dt) is our instrument 
equal to the share of PM2.5 from dust in cluster j (ϕj) times dust export from the 
Bodélé in year t (Dt). The estimated coefficient λ measures the effect of dust (or 
rainfall) in the Bodélé, weighted by share of PM2.5 from dust, on overall local 
PM2.5 concentrations. We also include a vector of individual, household and 
village-level controls X, which include: local rainfall and temperature in time 
period t, night-time lights in time period t, a dummy for whether the household 
uses clean cooking fuel, a dummy for whether mother completed primary school, 
mother’s age and age-squared at time of child’s birth, child sex, child’s birth order 

and a dummy for whether the child was a twin. Fixed effects (dummy variables) 
are included for each DHS cluster (γj), birth year (δt) and country–month (νcm) 
in our main specification. Our instruments are very strong, with first-stage F 
statistics > 100 (Fig. 2a) and are consistent across combinations of fixed effects, 
household controls and instruments (Extended Data Fig. 4; see Supplementary 
Information for further discussion on interpretation of first-stage results).

In the second stage, we regress infant mortality on predicted values of local 
PM2.5 exposure from equation (1):

yijcmt ¼ βdPMijcmt þ μXijcmt þ γj þ δt þ νcm þ εijcmt ð2Þ

where yijcmt is a binary measure of whether individual i survived to his/her first 
birthday. Equation (2) includes the same fixed effects and controls in X as equation 
(1). The fixed effects isolate variation in PM2.5 exposure from other time-invariant, 
seasonally varying, or time-trending factors that could be correlated with mortality. 
In particular, inclusion of cluster fixed effects accounts for any time-invariant 
unobservables that could be correlated with both PM2.5 exposure and mortality risk 
at the cluster level (for example, any location-specific differences in mortality rates 
due to average incomes or healthcare access), inclusion of country–month fixed 
effects accounts for any seasonal differences across locations within a country (for 
example, if mortality rates are higher in June than January in Nigeria) and time 
fixed effects account for any abrupt or trending factors common across the sample 
(for example, the overall decline in infant mortality over the last 15 yr). As an 
alternate specification, we can include mother fixed effects instead of cluster fixed 
effects in equations (1) and (2). In this specification, the effect of PM2.5 exposure 
on mortality is derived by comparing two siblings born at different times to the 
same mother (Extended Data Fig. 5). This strategy further reduces the possibility 
of unobserved confounders, at the cost of eliminating much of the variation in 
exposure across the sample.

For estimates of β̂ in equation (2) to represent causal estimates of the impact 
of PM2.5 on infant health, it must be the case that, conditional on controls, our 
instrument is uncorrelated with other factors beyond local PM2.5 exposure that also 
affect infant health. While this restriction is untestable, we directly include a vector 
of controls μXijcmt meant to address potential additional sources of confounding. In 
particular, one concern is that global or regional climate phenomena could affect 
both dust emission over the Bodélé as well as local meteorological conditions, and 
that these latter conditions could themselves shape health outcomes (for example, 
local drought lowering food availability). To account for this, we control directly 
for both temperature and rainfall locally, as well as for the global time series of 
Pacific sea surface temperature anomalies, the main index used to measure ENSO 
(Extended Data Fig. 5). A remaining failure of the exclusion restriction would have 
to involve large-scale climate phenomena that are not picked up either by these 
global indices or by local meteorological conditions and we are unaware of any 
such phenomena that fit this description.

Finally, we emphasize that β̂ estimates the local average treatment effect25 
of PM2.5 exposure, which in our setting is the average effect of PM2.5 on child 
health for those individuals for whom changes in dust emission over the Bodélé 
cause changes in local PM2.5 exposure. Our estimates thus cannot be assumed to 
represent treatment effect estimates for other types or sources of PM2.5 exposure 
nor estimates for regions where variation in PM2.5 is not driven by emission from 
the Bodélé.

Placebo tests. To ensure that the strong estimated first-stage relationship between 
variation in remote dust emission and variation in local PM2.5 concentrations is 
not simply driven by either common time trends or common shocks across dusty 
locations or by average spatial differences between dusty and less-dusty locations, 
we conduct a placebo exercise where we randomly reorder either the time series 
of dust emissions over the Bodélé or the spatial shares of baseline levels of dust 
exposure and re-estimate the relationship between these placebo instruments and 
local-level PM2.5 concentrations. In all cases, estimates on these placebo samples 
(n = 1,000 for each type of reshuffling) are close to zero (Fig. 2a,b), suggesting 
our estimated relationship between local PM2.5 concentrations and remote dust 
emission is not spurious. The reason that we conduct this placebo exercise for the 
first-stage (equation (1)) and not for the full instrumental variable (IV) estimation 
(equations (1) and (2)) is that manually adding uncertainty to our instruments 
creates an artificially weak first stage and inflates the IV estimates. For a single 
instrument the estimated IV coefficient is equal to the reduced form coefficient 
(that is, the coefficient associated with regressing infant mortality on our 
instrument directly) divided by the first-stage coefficient. Randomly reordering 
the elements of our instrument and causing the first-stage coefficient to be close 
to zero mechanically causes the IV estimates to be large. We therefore compare the 
magnitude of first-stage coefficients, rather than IV coefficients, for the placebo 
samples.

Climate change simulations. To understand the impact of changing precipitation 
under future climate conditions, we examine rainfall projections over the Bodélé 
Depression using 36 climate models run under RCP 8.5. For each model we 
calculate average daily rainfall levels for the baseline period 1995–2015 and for the 
future period 2045–2055. Average daily rainfall totals were then summed across 
the Harmattan season and changes in seasonal rainfall were estimated as (future 
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rainfall) – (baseline rainfall). Half of the models (18 of 36) were found to project 
an increase in rainfall while the other half project a decrease. The distribution of 
predicted rainfall changes is shown in Fig. 4a.

Using our historical data, we estimate that a 1-mm increase in rainfall in the 
Bodélé during the Harmattan season reduces PM2.5 in West Africa by 0.71 μg m–3. 
This estimate comes from a grid-cell level regression where annual PM2.5 in our 
West Africa study locations is regressed on season rainfall totals in the Bodélé 
Depression. The regression includes cell fixed effects to control for time-invariant 
differences over space and country-specific linear and quadratic time trends to 
control for country-specific trends in either rainfall or PM2.5 over time. Cells 
are weighted by population. To characterize the uncertainty associated with the 
rainfall–PM2.5 relationship we estimate the bootstrap distribution by sampling 
locations with replacement and re-estimating the coefficient 1,000 times. 
Combining these bootstraps with rainfall projections from the 36 climate models, 
we get 36,000 estimated changes in PM2.5 shown in Fig. 4b. While the median 
change in PM2.5 is zero, the inner 95% of projected changes range from 12 μg m–3 
reduction to 9 μg m–3 increase in PM2.5.

We then use our main model for West Africa (equation (2)) to estimate 
the change in infant mortality rate associated with changes in local PM2.5 
concentrations, again bootstrapping this estimate 1,000 times. Combined with 
the bootstrap sampling of the 36,000 changes in PM2.5 concentrations, we get 36 
million estimated changes in infant mortality (Fig. 4c). The median change in 
infant mortality is zero but the inner 95% range of the distribution of projected 
impacts spans a 19 deaths per 1,000 reduction (–23% relative to baseline) to a 16 
deaths per 1,000 increase (+20%).

Mitigation of dust emission damages. We simulate the use limited renewable 
groundwater resources in and near the Bodélé depression to dampen the surface 
of the emission region during the Harmattan season and reduce infant deaths 
through reduced downwind air pollution. Analogous systems have been used 
successfully to suppress emissions in places like Owens Lake in the United 
States36,44–47. To estimate the cost-effectiveness of this type of system we draw on 
available estimates on local dust emission, sustainable recharge and flow rates of 
local aquifers, depth-to-groundwater, equipment and operational costs for solar 
PV and pumping equipment, and assumptions of how deaths are converted to lost 
life-years. Baseline estimate and uncertainty ranges for each parameter and the 
exact calculations are shown in Extended Data Table 1 and described further in 
Supplementary Information. We calculate that a reasonable solar-based dampening 
system would avert 37,000 infant deaths in West Africa annually. Our baseline 
estimate assumes that infants whose death before reaching age 1 yr has been 
averted live, on average, 30 healthy life-years (and therefore the averted death also 
averts 30 disability-adjusted life-years). Combined with cost estimates, this yields a 
cost-effectiveness estimate of US$23.58 per averted year of life lost.

To assess uncertainty in these estimates we assign upper and lower bounds 
to as many parameters as possible (Extended Data Table 1) and sample from 
these distributions to generate a range of estimates. Parameter estimates from the 
literature are sampled uniformly between their upper and lower bounds while 
parameters that come from regression estimates in this paper are sampled from 
a normal distribution with mean equal to the regression coefficient and standard 
deviation equal to the estimated coefficient standard error. We sample from each 
of the parameters with defined uncertainty 1,000 times and calculate the cost per 
averted year of life lost. The median estimate is US$24 per averted year of life 
lost and the 95% CI US$11–75 (Fig. 5a). We also assessed individual parameters’ 
influence on the overall estimates (Fig. 5b). For each parameter with a defined 
range of uncertainty, the parameter was fixed at its minimum (maximum) value 
and then all other parameters were repeatedly sampled and median cost estimates 
were calculated. Estimates depend most heavily on the assumed years of life lost 
per death followed by the change in infant mortality as a response to changes in 
PM2.5. Cost estimates are stable even with substantial increases in our assumed cost 
of infrastructure.

Even the highest end of our estimates would make efforts to reduce dust 
emissions high-value interventions by any benchmark for low-income countries 
and would be cost competitive with many leading health interventions38. While 
this calculation clearly ignores other potential constraints to project deployment, 
such as logistical and political impediments to operating in remote and insecure 
environments in the Sahara, our intent is to suggest that such projects, if feasible, 
would yield enormous benefits at a modest cost.

We also note other key uncertainties and feedbacks absent from our 
calculation, the inclusion of which could possibly improve the efficacy of a wetting 
intervention beyond what we estimate here. For instance, recent work suggests that 
large-scale deployment of solar power over the Sahara could increase local rainfall39 
and highlights a potential negative feedback between dust emission and rainfall31,32. 
We also note that our estimate of the effect of wetting is based on the measured 
effect of rainfall on dust but rainfall both wets the soil as well as scavenges dust in 
the air; a ground irrigation system would only do the former. Understanding these 
impacts and feedbacks is an important avenue for future research.

Data availability
Data are available at https://github.com/burke-lab/NatSus2020.

Code availability
Code to replicate all results is available at https://github.com/burke-lab/
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Extended Data Fig. 1 | Location of observed births and their distance to the Bodélé Depression. (a) Each point represents one of the 28,461 DHS clusters 
included in our sample. The number of observed births in a single cluster ranges from 1 to 210. Orange points indicate the West Africa sample. The full 
sample includes all points. The Bodélé Depression is outlined in black. (b) Observed births are 500-5000km away from the Bodélé Depression.
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Extended Data Fig. 2 | See next page for caption.
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Extended Data Fig. 2 | Dust is rapidly transported from the Bodélé Depression across West Africa and beyond and correlation of local dust 
concentration with Bodélé dust dissipates with distance. (a) Daily dust propagation, measured as Dust Aerosol Optical Depth (DAOD), over eight days 
during a large dust activation event illustrates the magnitude of dust concentrations as well as the timescale and spatial extent of transmission. Dust AOD 
ranges from 0 to greater than 3.0 in this example. For comparison, AOD values during the 2018 northern California wildfires were <1.0. (b) Detrended 
time series correlation of DAOD in the Bodélé Depression and DAOD at selected population centres dissipate over space and time. Map shows the 
location of selected population centres across West Africa as well as Nairobi, Kenya. Right panel shows the time-series correlation of detrended DAOD 
values between the mapped locations and the Bodélé Depression. In general, as distance to the Bodélé increases, peak correlations in the detrended 
DAOD time series occur later and are lower in magnitude. Variation in DAOD in Nairobi, a populated location distant and not downwind from the Bodélé, 
is uncorrelated with dust from the Bodélé.
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Extended Data Fig. 3 | Estimated shares of particulate matter from natural sources in the exposure data correlate well and exhibit similar spatial 
patterns with estimates of total aerosols from dust derived from Aeronet ground stations. For all Aeronet ground stations in our study countries with at 
least 3 years of data we estimated the share of total aerosols from dust (see Supplement) and compared them to the modelled share of total particulate 
matter from natural sources (dust and sea salt) for the same locations in the exposure data used in our analysis.10 (a) Comparison of site by year shares. 
Despite the imperfect comparison between share of aerosols from dust to share of particulate matter from dust and sea salt, there is strong correlation 
between the data sets. The R2 associated with regressing site by year share of particulate matter from natural sources on site by year share of aerosols 
from dust is 0.71. The largest discrepancies occur in coastal areas where the share of particulate matter from natural sources is dominated by sea salt. In 
those cases the share of particulate matter from natural sources can be close to 1 while the share of aerosols from dust can be close to 0. (b) Analogous 
to panel (a) but for long-run site averages instead of site-year observations. (c) Site average share of particulate matter from natural sources at locations 
of Aeronet sites in our study countries. (d) Site average share of aerosols from dust. For both data sets, shares are highest in West Africa where they are 
close to 1 for many locations.
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Extended Data Fig. 4 | Variation in dust concentration and rainfall over the Bodélé Depression are strong predictors of variation in PM2.5 concentrations 
in other parts of Africa. Figure shows estimation results for six different specifications of the first stage (Eq. (1)) relationship between the conditions in the 
Bodélé instrument and local PM2.5. Models 1 and 4 include DHS cluster, birth year, and country by month fixed effects with household and local weather 
controls and the dust (Model 1) or rainfall (Model 4) instrument. Models 2 and 5 add additional controls for ENSO conditions and Models 3 and 6 replace 
DHS cluster fixed effects with a mother fixed effect to restrict comparisons to siblings. The different specifications consistently find dust in the Bodélé 
Depression is positively associated and rainfall negatively associated with PM2.5 concentrations in both our West African sample (white dots) and full 
African sample (black dots; see Extended Data Fig. 1 for study locations). Contemporaneous effects are large, statistically significant (F-stats of 17-366), 
and similar to the main specification without lags (Fig. 2) while lagged effects are small and not statistically significant. A complete description of the fixed 
effects (dummy variables) and controls is included in the Methods section.
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Extended Data Fig. 5 | Instrumental variable estimates of the effect of PM2.5 on infant mortality are largely consistent across specifications. Effects 
on infant mortality are similar when we isolate variation in local PM2.5 related to dust (Models 1-4) or rainfall (Models 5-8) over the Bodélé Depression. 
Models 1,5, and 9 include DHS cluster, child birth year, and country by month fixed effects with household and local weather controls (see Methods for 
details). Models 2 and 6 add controls for ENSO conditions. Models 3,7, and 10 replace DHS cluster fixed effects with mother fixed effects to limit the 
comparison to siblings. Models 4,8, and 11 drop the regression weights that account for survey sampling scheme and country population. Instrumental 
Variable (IV) estimates (Model 1-8) that isolate variation in local PM2.5 exposure related to changes in Bodélé conditions are larger than the Ordinary Least 
Square (OLS) estimates that rely on all sources of variation in local PM2.5 exposure (Models 9-11).
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Extended Data Table 1 | Overview of parameters used in cost calculations.

Nature Sustainability | www.nature.com/natsustain

http://www.nature.com/natsustain

	Dust pollution from the Sahara and African infant mortality

	Results

	Discussion

	Methods

	Data
	Infant mortality data
	PM2.5 data
	Rainfall data
	Constructing PM2.5 exposure

	Estimation
	Placebo tests
	Climate change simulations
	Mitigation of dust emission damages

	Acknowledgements

	Fig. 1 Local air pollution in Africa is driven by both local economic activity and remote natural sources.
	Fig. 2 Variation in dust and rainfall over the Bodélé Depression are strong predictors of variation in PM2.
	Fig. 3 Instrumental variables (IV) estimates suggest large impacts of PM2.
	Fig. 4 Disagreement among climate model projections of future rainfall changes in the Sahara generates a large spread in projected infant mortality changes in Africa.
	Fig. 5 Cost per averted life-year lost under an intervention using pumped groundwater to reduce dust export from the Bodélé.
	Extended Data Fig. 1 Location of observed births and their distance to the Bodélé Depression.
	Extended Data Fig. 2 Dust is rapidly transported from the Bodélé Depression across West Africa and beyond and correlation of local dust concentration with Bodélé dust dissipates with distance.
	Extended Data Fig. 3 Estimated shares of particulate matter from natural sources in the exposure data correlate well and exhibit similar spatial patterns with estimates of total aerosols from dust derived from Aeronet ground stations.
	Extended Data Fig. 4 Variation in dust concentration and rainfall over the Bodélé Depression are strong predictors of variation in PM2.
	Extended Data Fig. 5 Instrumental variable estimates of the effect of PM2.
	Extended Data Table 1 Overview of parameters used in cost calculations.




